Delivering the outcomes you demand with SAPIEN 3

Jeehoon Kang, MD Seoul National University Hospital

TCTAP 2021 WIRTUAL

Disclosures

I, Jeehoon Kang, declare that I have no conflict of interest or any financial disclosures related to the following presentation.

Contents

History of TAVI in Severe AS

- Recent publication
 - Room for any improvement?

History of TAVI in Severe AS

TCTAP 2021 MIRTUAL

History of TAVI in Severe AS

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo,
S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn,
P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman,
W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb,
and C.R. Smith, for the PARTNER 3 Investigators*

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

Jeffrey J. Popma, M.D., G. Michael Deeb, M.D., Steven J. Yakubov, M.D., Mubashir Mumtaz, M.D., Hemal Gada, M.D., Daniel O'Hair, M.D., Tanvir Bajwa, M.D., John C. Heiser, M.D., William Merhi, D.O., Neal S. Kleiman, M.D., Judah Askew, M.D., Paul Sorajja, M.D., Joshua Rovin, M.D., Stanley J. Chetcuti, M.D., David H. Adams, M.D., Paul S. Teirstein, M.D., George L. Zorn III, M.D., John K. Forrest, M.D., Didier Tchétché, M.D., Jon Resar, M.D., Antony Walton, M.D., Nicolo Piazza, M.D., Ph.D., Basel Ramlawi, M.D., Newell Robinson, M.D., George Petrossian, M.D., Thomas G. Gleason, M.D., Jae K. Oh, M.D., Michael J. Boulware, Ph.D., Hongyan Qiao, Ph.D., Andrew S. Mugglin, Ph.D., and Michael J. Reardon, M.D., for the Evolut Low Risk Trial Investigators*

History of TAVI in Severe AS

The guideline for Severe AS

3.2.4.2. Choice of SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR Is Appropriate

Recommendations for Choice of SAVR Versus TAVI for Patients for Whom a Bioprosthetic AVR Is Appropriate Referenced studies that support the recommendations are summarized in Online Data Supplement 11 to 13.						
COR	LOE	Recommendations				
1	A	 For symptomatic and asymptomatic patients with severe AS and any indication for AVR who are <65 years of age or have a life expectancy >20 years, SAVR is recommended.^{1–3} 				
1	A	2. For symptomatic patients with severe AS who are 65 to 80 years of age and have no anatomic contraindication to transfemoral TAVI, either SAVR or transfemoral TAVI is recommended after shared decision-making about the balance between expected patient longevity and valve durability. ^{1,4–8}				
1	A	 For symptomatic patients with severe AS who are >80 years of age or for younger patients with a life expectancy <10 years and no anatomic contraindication to transfemoral TAVI, transfemoral TAVI is recommended in preference to SAVR.^{1,4–10} 				

ACC/AHA CLINICAL PRACTICE GUIDELINE

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

	Favors SAVR	Favors TAVI
Age/life expectancy*	Younger age/longer life expectancy	Older age/fewer expected remaining years of life
Valve anatomy	BAV Subaortic (LV outflow tract) calcification Rheumatic valve disease Small or large aortic annulus†	Calcific AS of a trileaflet valve
Prosthetic valve preference	Mechanical or surgical bioprosthetic valve preferred Concern for patient–prosthesis mismatch (annular enlargement might be considered)	Bioprosthetic valve preferred Favorable ratio of life expectancy to valve durability TAVI provides larger valve area than same size SAVR
Concurrent cardiac conditions	Aortic dilation‡ Severe primary MR Severe CAD requiring bypass grafting Septal hypertrophy requiring myectomy AF	Severe calcification of the ascending aorta ("porcelain" aorta)
Noncardiac conditions		Severe lung, liver, or renal disease Mobility issues (high procedural risk with sternotomy)
Frailty	Not frail or few frailty measures	Frailty likely to improve after TAVI
Estimated procedural or surgical risk of SAVR or TAVI	SAVR risk low TAVI risk high	TAVI risk low to medium SAVR risk high to prohibitive

PARTNER3 Trial – 2 YEAR FU

A Recent publication

Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk

Martin B. Leon, MD,^{+b} Michael J. Mack, MD,⁵ Rebecca T. Hahn, MD,^{+b} Viruod H. Thourami, MD,² Raj Makkar, MD,⁷ Susheel K. Kodali, MD,⁴ Maria C. Alu, MS,^{bb} Mahesh V. Madhavan, MD,^{4b} Ratherine H. Chau, MD, MS,⁶ Mark Rosso, MD, MS,⁵ Samir R. Kapadia, MD,⁵ S. Chris Malaiare, MD,⁵ David J. Gohen, MD, MS,¹ Philipp Blanke, MD,¹ Jonathon A. Leipsic, MD,⁴ Mathew R. Williams, MD,⁵ James M. McCabe, MD,¹ David L. Brown, MD,⁵ Vasilis Baballans, MD,⁴⁰ Sorti Goldman, MD,⁵ Howard C. Herrmann, MD,⁴⁰ Wilson Y. Szeto, MD,⁵ Philippe Geneseux, MD,⁵ Ashish Pershad, MD, MS,⁴⁰ Michael Lu, PoD,³ John G. Webb, MD,¹ Craig R. Smith, MD,⁴⁰ Philippe Pibarot, DVM, PoD,⁴ for the PARTNER 3 Investigators

Anatomic

- Aortic annulus diameter < 16 mm or > 28 mm (3D imaging)
- Bicuspid valve (CT imaging)
- Severe AR (> 3+) or MR (> 3+)
- Severe LV dysfunction (LVEF < 30%)
- Severe calcification of aortic valvular complex (esp. LVOT)
- Vascular anatomy not suitable for safe femoral access
- Complex CAD: ULM, Syntax score > 32, or not amenable for PCI
- Low coronary takeoff (high risk for obstruction)

Clinical

- Acute MI within 1 month
- Stroke or TIA within 90 days
- Renal insufficiency (eGFR < 30 ml/min) and/or renal replacement Rx
- Hemodynamic or respiratory instability
- Frailty (objective assessment; > 2/4+ metrics)

Key exclusion criteria

TCTAP 2021 VIRTUAL

MB Leon et al. J Am Coll Cardiol. 2021, 77 (9) 1149–1161

PARTNER3 Trial – 2 YEAR FU

TABLE 2 Key Secondary Endpoint	ts					
	KM Rate at 1 Year			KM Rate at 2 Years		
	TAVR (n = 496)	SAVR (n = 454)	p Value	TAVR (n = 496)	SAVR (n = 454)	p Value
MI	6 (1.2)	10 (2.2)	0.23	9 (1.8)	12 (2.7)	0.36
New-onset atrial fibrillation	30 (7.2)	150 (40.9)	<0.001	33 (7.9)	153 (41.8)	<0.001
New PPM (excluding baseline)	38 (7.9)	25 (5.8)	0.18	44 (9.1)	30 (7.0)	0.21
New PPM (including baseline)	38 (7.7)	25 (5.6)	0.18	44 (8.9)	30 (6.8)	0.20
New LBBB (excluding baseline)	98 (20.4)	35 (8.0)	<0.001	100 (20.8)	42 (9.7)	<0.001
New LBBB (including baseline)	98 (19.8)	35 (7.7)	<0.001	100 (20.2)	42 (9.4)	<0.001
Coronary obstruction	1 (0.2)	3 (0.7)	0.28	1 (0.2)	3 (0.7)	0.28
AV re-intervention	3 (0.6)	2 (0.5)	0.76	4 (0.8)	4 (0.9)	0.85
Endocarditis	1 (0.2)	2 (0.5)	0.49	1 (0.2)	4 (0.9)	0.13
Valve thrombosis*	5 (1.0)	1 (0.2)	0.13	13 (2.6)	3 (0.7)	0.02

Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk

Martin B. Leon, MD,⁺² Michael J. Mack, MD,⁺ Rebecca T. Hahn, MD,⁺² Virod H. Thourani, MD,² Raj Makkar, MD,⁺ Susheel K. Kodal, MD,⁺ Maria C. Alu, MS,⁺⁵ Mahesh V. Madhavan, MD,⁴⁵ Katherine H. Chua, MD, MS,⁴⁵ Mark Rasso, MD, MS,⁵⁵ Samire R. Rapadia, MD,⁶⁵ C. Chris Malaisrie, MD,⁵⁵ Ziwid J. Cohen, MD, MS,²⁷ Philipp Blanke, MD,¹⁵ Jonathon A. Leipsic, MD,¹⁶ Scott Goldman, MD,⁶⁵ Chris Malaisrie, MD,⁵⁵ Ziwid J. Cohen, MD, MS,²⁷ Philipp Blanke, MD,¹⁵ Vasilis Bahallatns, MD,¹⁶ Scott Goldman, MD,¹⁶ Howard C. Herrmann, MD,¹⁷ Wilson Y. Szeto, MD,¹⁵ Philippe Genereux, MD,²⁷ Asott Goldman, MD, MS,⁴⁵ Michael Lo, No.J.¹ John G. Webb, MD,¹⁷ Craig R. Smith, MD,¹⁶ Philippe Thanot, JVM, (Fd),⁷ An the PARTNER 3 Investigators

1

	≥ Modera	te PVR: P = N	S; ≥ Mild PVR:	P < 0.001 for	All Time Point	s
100	_		_			
80 -						
% 60 ·						
uate 40 -						
20 -						
o 💶	TAVR N = 487	Surgery N = 421	TAVR N = 470	Surgery N = 382	TAVR N = 431	Surgery N = 354
Severa	0	0	0	0	0	0
Moderate-Severe	0.2	0	0.2	0	0	0
Moderate	0.6	0	0.6	0.5	0.5	0
Mild-Moderate	3.7	0	5,1	0.3	6.0	0.3
Nend	25.1	2.9	24.3	1.8	20.0	2.0
None/Trace	70.4	97.1	69.8	97.4	73.5	
					1.010	97.7

TCTAP 2021 MIRTUAL

PARTNER3 Trial – 2 YEAR FU

	TABLE 2 Key Secondary Endpoints						
		KM Rate at 1 Year			к	M Rate at 2 Years	
		TAVR (n = 496)	SAVR (n = 454)	p Value	TAVR (n = 496)	SAVR (n = 454)	p Value
	МІ	6 (1.2)	10 (2.2)	0.23	9 (1.8)	12 (2.7)	0.36
	New-onset atrial fibrillation	30 (7.2)	150 (40.9)	<0.001	33 (7.9)	153 (41.8)	<0.001
	New PPM (excluding baseline)	38 (7.9)	25 (5.8)	0.18	44 (9.1)	30 (7.0)	0.21
	New PPM (including baseline)	38 (7.7)	25 (5.6)	0.18	44 (8.9)	30 (6.8)	0.20
Π	New LBBB (excluding baseline)	98 (20.4)	35 (8.0)	<0.001	100 (20.8)	42 (9.7)	<0.001
U	New LBBB (including baseline)	98 (19.8)	35 (7.7)	<0.001	100 (20.2)	42 (9.4)	<0.001
	Coronary obstruction	1 (0.2)	3 (0.7)	0.28	1 (0.2)	3 (0.7)	0.28
	AV re-intervention	3 (0.6)	2 (0.5)	0.76	4 (0.8)	4 (0.9)	0.85
	Endocarditis	1 (0.2)	2 (0.5)	0.49	1 (0.2)	4 (0.9)	0.13
	Valve thrombosis*	5 (1. <mark>0</mark>)	1 (0.2)	0.13	13 (2.6)	3 (0.7)	0.02

Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk

Martin B. Leon, MD,⁺² Michael J. Mack, MD,⁺ Rebecca T. Hahm, MD,⁺² Vinod H. Thourami, MD,² Raj Makkar, MD,⁺ Susheel K. Kodal, MD,⁺ Maria C. Alu, MS,⁺⁵ Mahesh V. Madhavan, MD,¹⁰ Katherine H. Chua, MD, MS,⁴ Mark Rasso, MD, MS,⁵ Samir R. Rapadia, MD,⁶ S. Chris Mallarie, MD,² Taivid J. Cohen, MD,⁴ Sci,¹ Philipp Blarke, MD,¹ Jonathon A. Leipsic, MD,¹¹ Mathew R. Williams, MD,⁴ James M. McCabe, MD,¹ David L. Brown, MD,⁶ Vasilis Bahallatns, MD,¹⁶ Scott Goldman, MD,⁵¹ Howard C. Herrmann, MD,⁴ Wilson Y. Szeto, MD,⁵ Philippe Generoux, MD,² Anlish Pershad, MD, MS,⁴ Michael Lu, ProT, John G. Webb, MD,² Craig R. Smith, MD,⁶

1

		and a second second second				0.00
100	-		-		-	
80 -						
60 -						
40.						
20 -						
o 💶	TAVR N = 487	Surgery N = 421	TAVR N = 470	Surgery N = 382	TAVR N = 431	Surgery N = 354
0	TAVR N = 487 0	Surgery N = 421 O	TAVR N = 470 0	Surgery N = 382 0	TAVR N = 431 0	Surgery N = 354 0
O Severe Moderate-Severe	TAVR N = 487 0 0.2	Surgery N = 421 O O	TAVR N = 470 0 0.2	Surgery N = 382 0	TAVR N = 431 0 0	Surgery N = 354 0
O Silvent Moderate-Severe Moderate	TAVR N = 487 0 0.2 0.6	Surgery N = 421 0 0 0	TAVR N = 470 0 0.2 0.6	Surgery N = 382 0 0 0.5	TAVR N = 431 0 0 0.5	Surgery N = 354 0 0
Severe Moderate-Severe Moderate Mild-Moderate	TAVR N = 487 0 0.2 0.6 3.7	Surgery N × 421 0 0 0 0	TAVR N = 470 0 0.2 0.6 5.1	Surgery N = 382 0 0 0.5 0.3	TAVR N = 431 0 0,5 6,0	Surgery N = 354 0 0 0 0
Severe Moderate-Severe Moderate Mild-Moderate Xelid	TAVR N = 487 0 0.2 0.6 3.7 25.1	Surgery N × 421 0 0 0 0 2.9	TAVR N = 470 0 0.2 0.6 5.1 24.3	Surgery N = 382 0 0 0,5 0,3 1.8	TAVR N = 431 0 0.5 6.0 20.0	Surgery N = 354 0 0 0 0 0.3 2.0
Severe Moderate-Severe Moderate Mild-Moderate Meld None/Trace	TAVR N = 487 0 0.2 0.6 3.7 25.1 70.4	Surgery N = 421 0 0 0 0 2.9 97.1	TAVR N = 470 0 0.2 0.6 5.1 24.3 69.8	Surgery N = 382 0 0 0.5 0.3 1.8 97.4	TAVR N = 431 0 0.5 6.0 20.0 73.5	Surgery N = 354 0 0 0 0 0 3 2.0 97.7

Points to improve

Rhythm abnormality

New onset LBBB and PM implantation

- Valve thrombosis
 - Need of Adequate antithrombotic strategy

• Paravalvular leakage

POINTS TO IMPROVE : RHYTHM ABNORMALITY

TCTAP 2021 MIRIUAL

Points to improve: PM implantation

Predictors of Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement With the SAPIEN 3

Victor Mauri, MD,⁶ Andreas Reimann,⁶ Daniel Stern, MD,⁵ Maximilian Scherner, MD,⁶ Elmar Kuhn, MD,⁶ Volker Rudolph, MD,⁵ Stephan Rosenkranz, MD,⁶ Kaveh Eghbalzadeh, MD,⁶ Kai Friedrichs, MD,⁶ Thorsten Wahlers, MD,⁶ Stephan Baldus, MD,⁶ Navid Madershahian, MD,⁶ Tanja K. Rudolph, MD⁶

TABLE 6 Univariate and Multivariate Regression Analysis to Identify Predictors of Permanent Pacemaker Implantation

	Univariate Analysis			Multivariate Analysis		
	OR	95% CI	p Value	OR	95% CI	p Value
Age (yrs)	1.1	0.99-1.13	0.094			
Female	1.9	0.89-3.98	0.096			
LVEF	1.0	0.98-1.04	0.618			
Logistic EuroSCORE I	1.0	0.96-1.03	0.619			
Atrial fibrillation	0.9	0.40-1.92	0.749			
AVB grade I	0.8	0.18-3.74	0.787			
LBBB	1.8	0.22-14.42	0.588			
RBBB	8.3	2.11-32.98	0.003	16.9	3.0-95.5	0.001
Incomplete R8BB	2.0	0.38-10.26	0.417			
NCC calcification >790.8 mm ³	3.0	0.97-9.29	0.056			
RCC calcification >203.8 mm ³	0.6	0.29-1.30	0.200			
LCC calcification >131.4 mm ³	2.2	0.93-5.02	0.075			
LVOT _{NC} calcification >3.2 mm ³	2.9	1.20-7.01	0.018	0.8	0.2-2.9	0.736
LVOT _{RC} calcification >4.8 mm ³	4.0	1.83-8.58	< 0.001	4.7	1.6-14.1	0.005
LVOT _{LC} calcification >13.7 mm ³	4.4	2.02-9.70	< 0.001	3.7	1.3-10.6	0.016
Pre-dilation	1.9	0.90-4.12	0.094			
Post-dilation	2.7	0.66-10.96	0.169			
Out-of-range oversizing	0.4	0.09-1.71	0.210			
Oversizing >20%	0.6	0.17-2.10	0.424			
Implantation depth >25.5% ventricular part of the stent frame	9.7	4.32-21.90	<0.001	15.7	5.7-43.5	<0.001

Development of a Risk Score to Predict New Pacemaker Implantation After Transcatheter Aortic Valve Replacement

Soroosh Kiani, MD, ⁶ Norihiko Kamioka, MD,⁶ George B. Black, MD,⁶ Marvin Louis Roy Lu, MD,⁶ John C. Lisko, MD,⁶ Birju Rao, MD,⁶ Andenet Mengistu, BS,⁶ Patrick T. Gleason, MD,⁶ James P. Stewart, BS,⁶ Hope Caughron, MD,⁶ Andy Dong, BS,⁵ Hima Patel, BS,⁶ Kendra J. Grubb, MD,⁶ Adam B. Greenbaum, MD,⁶ Chandan M. Devireddy, MD,⁶ Robert A. Guyton, MD,⁶ Bradley Leshnower, MD,⁶ Faisal M. Merchant, MD,⁶ Mikhael El-Chami, MD,⁶ Stacy B. Westerman, MD,⁶ Michael S. Lloyd, MD,⁶ Vasilis C. Babaliaros, MD,⁸ Michael H. Hoskins, MD⁶

CENTRAL ILLUSTRATION The Emory Risk Score to Predict the Need for Pacemaker Implantation After

Kiani, S. et al. J Am Coll Cardiol Intv. 2019;12(21):2133-42.

(Left) Elements included in the risk score and points assigned for each when positive. (Right) The rate of pacemaker implantation (PMI) at each level of the Emory risk score. The solid line denotes the average rate of PMI across the entire cohort (8.2%). Because there was only 1 patient with a risk score :>4 (this patient was in the PMI group), these scores were combined into the "4+" category. On 1-way analysis of variance between groups, p < 0.001. TAVR = transcatheter aortic valve replacement.

CI - confidence interval; OR - odds ratio; other abbreviations as in Table 1.

POINTS TO IMPROVE : VALVULAR THROMBOSIS

Patient	s T	herapeutic strategy	Randomized controlled trials	Completion date
·OAC	Antiplatelet	Single antiplatelet therapy vs. Dual antiplatelet therapy	POPular-TAVI (NCT02247128) DAPT vs. SAPT (clopidogrel) CLOE (Funding under review) DAPT vs. SAPT (clopidogrel)	2020
No indication for	Anticoagulation	Anticoagulation ± Antiplatelet vs. Dual antiplatelet therapy	GALILEO (NCT02556203) Rivaroxaban+ASA vs. DAPT ATLANTIS (NCT02664649) Apixaban vs. standard of care ADAPT-TAVR (NCT03284827) Edoxaban vs. DAPT AUREA (NCT01642134) DAPT vs. VKA	STOP 2019 (results) 2020 2020 2020 2019
ication for OAC	Anticoagulation alone	Anticoagulation alone vs. Anticoagulation + Antiplatelet	POPular-TAVI (NCT02247128) VKA vs. VKA+clopidogrel ATLANTIS (NCT02664649) Apixaban vs. standard of care AVATAR (NCT02735902) VKA vs. VKA+ASA CLOE (Funding under review) DAPT vs. SAPT (clopidogrel)	2020 2020 2020 2020
Ind	Anticoagulant agent	Anticoagulation (NOAC) ± Antiplatelet vs. Anticoagulation (VKA) ± Antiplatelet	ENVISAGE TAVI AF(NCT02735902) Edoxaban±Antiplatelet vs. VKA ±Antiplatelet	2020

Points to improve: Antithrombotic medication

ISSUE OF PARAVALVULAR LEAKAGE

With a case presentation

Paravalvular leakage

- PVL is associated with *increased mortality*. Directly or indirectly? Still unknown.
- Factors associated with PVL
 - Anatomical, clinical risk factors
 - AV, aortic annulus calcification, anatomy of the aortic annulus, LVOT-ascending aorta angle
 - Valvular, Procedural factors
 - Generation of valve, size of valves, depth of implantation, pre/post balloon angioplasty, etc.

The NEW ENGLAND

JOURNAL of MEDICINE

Replacement

r, R. Papers, R. R., 1 (Director, MD), Nu., 257 (Sec.

Transcatheter or Surgical Aortic-Vah

Paravalvular leakage

The NEW ENGLAND

JOURNAL of MEDICINE

TCTAP 2021 MIRTUAL

• 72/F

#. Severe AS

#. h/o cerebral aneurysm rupture ('98) [*Sequelae: Rt side weakness]

#. h/o ESWL for Renal stone

#. TAVI with Sapien3 (+1.5cc, 11.7% oversizing)

• How can we assess PVL

Angiography

Echocardiography

Hemodynamic index

Reproducible	Most accurate	Reproducible
Peri-procedural assessment		Quantitative
		Investigator independent
Highly subjective	Investigator dependent	False positive and false
lodine contrast use	Sedation is necessary for TEE	negative

Case

How can we assess PVL

- AR index: A simple, reproducible, and point-of-care assessment of periAR during TAVI
- Patients (N=146) who underwent TAVI with CoreValve Prosthesis
- Primary End point: 1 year all-cause mortality

Figure 2 AR Index According to Degree of PeriAR

The AR index according to the degree of periAR as assessed by echocardiography after transcatheter aortic valve implantation. Abbreviations as in Figure 1.

Kaplan-Meier estimates of cumulative survival according to the degree of periAR as assessed by echocardiography (A) and according to the AR index (B). CI = confidence interval; HR = hazard ratio; other abbreviations as in Figure 1.

Sinning, J.M., et al., J Am Coll Cardiol, 2012

TETAP 2021 MIRTUAL

Case

• How can we assess PVL: Proposal of a new AR index

- During the cardiac cycle, AR occurs after the dicrotic notch (RED arrow)
- The relative pressure drop, compensated by the aortic pressure gradient may be associated with AR

TCTAP 2021 MIRTUAL

Kang J, Kim HS et al. JACC Cardiovasc Interv. 2020

• How can we assess PVL: Proposal of a new AR index

 Analysis of 287 patients who underwent TAVI and SNUH, with a accurate hemodynamic record, with 1-year follow-up EchoCG..

New AR index= $\frac{AoSBP-LVEDP}{Dicrotic-AoDBP}$

New AR index < 3.3
 Sensitivity 81.2% Specificity 75.3%
 PPV 31.7% NPV 96.6%
 AR index < 25
 Sensitivity 62.5% Specificity 52.0%
 PPV 15.5% NPV 90.7%

TCTAP 2021 MIRTUAL

Kang J, Kim HS et al. JACC Cardiovasc Interv. 2020

Case

#. TAVI with Sapien3 (+1.5cc, 11.7% oversizing)

- Post TAVI Ao/LV pressure double tracing
- SBP 150 mmHg, DBP 48mmHg
- Dicrotic notch 73mmHg, LVEDP 22mmHg
- AR index 17.3, new AR index: 5.1

TCTAP 2021 VIRTUAL

Take home message and Summary

#. TAVI is expanding its indication for Severe AS treatment Treating more low risk patients requires more clinical excellency.

#. Compared to the traditional treatment, there are still points to improve. Rhythm abnormality Optimal Antithrombotic agent Paravalvular leakage

#. The '**New AR index**' may be a simple, reproducible and quantitative index to predict PVL during TAVI.

Thank you for your attention

TCTAP 2021 WIRTUAL